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Abstract. Let Var(Mplan) denote the variety generated by the class Mplan

of planar modular lattices. In 1977, based on his structural investigations,

R. Freese proved that Var(Mplan) has continuumly many subvarieties. The
present paper provides a new approach to this result utilizing lattice identities.

We also show that each subvariety of Var(Mplan) is generated by its planar
(subdirectly irreducible) members.

1. Introduction

Let Mplan denote the class of planar modular lattices. Recall that a lattice L is
planar, if (L;≤) is a suborder of the direct square of a finite chain. (Hence planar
lattices are finite by definition.) Let Var(Mplan) stand for the variety generated
by Mplan. This variety has been intensively studied by G. Grätzer and R.W.
Quackenbush [9]. In particular, [9] completely describes the subdirectly irreducible
members of Var(Mplan).

In this paper, we explicitely construct a set Σ = {λn : 2 < n ∈ N} of lattice
identities with the property that for any ∆ ⊆ Σ, the variety Var(∆)∩Var(Mplan)
determines ∆. To show that Σ has this property, we also construct lattices Ln ∈
Mplan, for 2 < n, satisfying the following statement.

Theorem 1. For 2 < k, n ∈ N, the identity λn holds in Lk if and only if k 6= n.

This theorem implies the following classical result of R. Freese [4], which is based
on his deep structural investigations of modular lattices of width four.

Corollary 2 (R. Freese [4]). Var(Mplan) has continuumly many subvarieties. In
fact, the power set of the set N of natural numbers is a suborder of the lattice of
subvarieties of Var(Mplan).

The following result states an interesting property of Var(Mplan).

Theorem 3. Each subvariety of Var(Mplan) is generated by its subdirectly irre-
ducible planar members.

Date: Submitted March 31, 2008. Revisions August 15, 2008 and November 21, 2008.
Key words and phrases. Modular lattice, planar, lattice variety, subvariety.
This research was partially supported by the NFSR of Hungary (OTKA), grant no. T 049433,

T 48809 and K 60148.

1
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Notation. We use the notation of G.Grätzer [7]. The Glossary of Notation of [7]
is available as a pdf file at

http://mirror.ctan.org/info/examples/Math_into_LaTeX-4/notation.pdf

2. Proof of Theorem 3

The structure of planar modular lattices is well-understood, see G.Grätzer and
R.W. Quackenbush [9]. Let Mn denote the modular lattice of length two with
exactly n atoms, n ≥ 3. Let L be a planar modular lattice. Using a result of
Jónsson [13], it is shown in [9] that each Mn-sublattice of L is necessarily a covering
sublattice of L, that is, if x ≺ y in Mn, then x ≺ y in L. By removing the inner
elements from all Mn-sublattices, we obtain a distributive lattice Frame L, called
the frame of L. Notice that if we think of L as a fixed diagram in the plane, then
FrameL is uniquely defined; otherwise it is unique only up to isomorphism.

In order to reduce the complexity of some formulas, the join and meet of elements
x and y in a lattice will be denoted by x + y and xy, respectively. Every lattice in
this paper is assumed to be modular.

We prove four lemmas we shall need to verify Theorem 1. The first lemma is
part of the folklore; we prove it for the reader’s convenience.

Lemma 4. Let Θ be a congruence of a lattice L such that L/Θ is finite. Then we
can select an element aB in each B ∈ L/Θ such that the mapping ϕ : B 7→ aB is
an order embedding of L/Θ in L.

Proof. First, select an element cB in each B ∈ L/Θ. Then we define the aB

by induction. For the zero Z of L/Θ, let aZ = cZ . If B ∈ L/Θ is distinct
from Z and aC ∈ C has already been defined for all C < B, then we define
aB = cB +

∑
{aC : C < B}. This element belongs to B, because Θ is a congruence.

Clearly, ϕ is injective and isotone. Further, if D 6≤ B, then aD + aB ∈ D + B 6=
B 3 aB guarantees that aD 6≤ aB. �

The following lemma is very easy and can also be found in G. Grätzer and R.W.
Quackenbush [10].

Lemma 5. Var(Mplan) is a locally finite variety.

Proof. Let L ∈ Var(Mplan) be generated by {a1, . . . , an}. Let FD(2n) denote
the free distributive lattice on 2n generators; it is a finite lattice. If ai is an
inner element of an Mn-sublattice, then let bi and ci be its lower and upper cover,
respectively. Otherwise let bi = ci = ai. Since the bi and the ci belong to FrameL,
|[b1, . . . , bn, c1, . . . , cn]| ≤ |FD(2n)|. Keeping in mind that the inner elements of
Mn-sublattices are doubly-irreducible, we conclude that L = [b1, . . . , bn, c1, . . . , cn]∪
{a1, . . . , an}, so it has at most |FD(2n)|+ n elements. �

Let us call a lattice L ∈ Var(Mplan) locally planar iff all of its finite sublattices
are planar. For example, the direct square of any infinite chain is locally planar
but not planar, and it belongs to Var(Mplan).

Lemma 6. Every homomorphic image of a locally planar lattice in Var(Mplan) is
locally planar.
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Proof. Let K ∈ Var(Mplan) be locally planar and let L = K/Θ. Consider an
arbitrary finite sublattice L′ of L. Then L′ = K ′/ΘeK′ for an appropriate sublattice
K ′ of K. We know from Lemma 4 that L′ is order-isomorphic to a finite subset
B of K ′. Since [B], which is a finite sublattice of K by Lemma 5, is planar, we
conclude that [B], and therefore L′, can be embedded in the direct square of a finite
chain. Thus, L′ is a planar lattice. �

Lemma 7. The class of all locally planar modular lattices is axiomatizable in
Var(Mplan).

Proof. For each n ∈ N, there are only finitely many planar lattices of size n. Hence
there is a first order formula Φn expressing that whenever x1, . . . , xn are pairwise
distinct elements, then either they form a planar sublattice or they do not form a
sublattice. Now for each L ∈ Var(Mplan), the lattice L satisfies {Φn :n ∈ N} iff L
is locally planar. �

Proof of Theorem 3. Let U be a subvariety of Var(Mplan). We show that the class
of subdirectly irreducible members of U in Mplan, that is, Si(U)∩Mplan, generates
U. Since U, like any variety, is generated by Si(U), it suffices to show that an
arbitrary K ∈ Si(U) is in the variety generated by Si(U)∩Mplan. Since K belongs
to the variety generated by Mplan, Jónsson’s Lemma, see [12] or [6], yields that
K ∈ HSPuMplan.

By Lemma 7 and the  Loś Theorem, PuMplan consists of locally planar lattices.
Hence, by Lemma 6, K is locally planar. This implies that if a lattice identity λ
holds in all finite sublattices of K, then λ holds in K as well. In other words, if a
variety contains all finite sublattices of K, then it also contains K. Hence it suffices
to show that every finite sublattice K ′ of K belongs to the variety generated by
Si(U) ∩ Mplan. But this is clear by Lemma 6: the subdirectly irreducible factors
of Ki are in Si(U) ∩Mplan, for they are homomorphic images of Ki. �

3. The construction of Ln and λn

If x, y, z ∈ L ∈ Mplan are the three distinct atoms of an M3-sublattice of L,
then the set {x, y, z} will be called a diamond of L. Since we assume a fixed planar
diagram of L, we call a vector ~u = (x, y, z) a diamond if {x, y, z} is a diamond
with leftmost (=western) element x, middle element y, and rightmost (=eastern)
element z. If x = y = z, then we say that ~u is a singleton.

For ~u = (x, y, z) ∈ L3, for a modular lattice L, let us define

(1) ~d(~u) =
(
(x + yz)(y + z) , (y + xz)(x + z) , (z + xy)(x + y)

)
.

Notice that the first component of ~d(~u) equals
(
x+(xy+xz+yz)

)
(x+y)(x+z)(y+z),

and similar terms are use for the other two components. The next lemma follows
from R. Dedekind’s description of the free modular lattice on three generators [3],
see the remark prior to Corollary II.1.3 in G.Grätzer [6].

Lemma 8. Let ~u = (x, y, z) ∈ L3. Then ~d(~u) is a diamond or a singleton. If ~u is
a diamond, then ~d(~u) = ~u. If ~u is not an antichain, then ~d(~u) is a singleton.

We would like to point out that A. P. Huhn [11] gives a far-reaching generalization
of this lemma.
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By Lemma 8, the equation ~d(~u) = ~u says that either ~u is a diamond or it is
a singleton. For ~u = (a, b, c) ∈ L3 and ~v = (d, e, f) ∈ L3, we define ~m(~u,~v ) =
(d∗, e∗, f∗):

~v ′ = (d′, e′, f ′) := (c + d, c + e, c + f),
~v ′′ = (d′′, e′′, f ′′) := ~d(~v ′),
~v ′′′ = (d′′′, e′′′, f ′′′) := (a + b + e′′f ′′, e′′, f ′′),

~m(~u,~v ) = ~v ∗ = (d∗, e∗, f∗) := ~d(~v ′′′).

Our motivation is to reach the northeast situation of Figure 2 or to collapse ~v into
a singleton.

Lemma 9. If at least one of ~v, ~v ′, ~v ′′, ~v ′′′, and ~v ∗ has two comparable components,
then ~m(~u,~v ) = ~v ∗ is a singleton.

Proof. Evident by Lemma 8. �

Now we are in the position to define the lattices Ln, n ≥ 3. We illustrate
this definition with L3 and L6 in Figure 1, where the gray squares stand for the
diamonds of L6.

Figure 1. L3 and the scheme of L6

For each n ≥ 3, the lattice Frame Ln is the direct square of the 2n-element
chain and Ln has 2n + 1 diamonds, labeled by 0, 1, . . . , 2n. Starting from the 0-th
diamond, we make 2n − 3 northwest steps to reach the first diamond, then two
northeast steps to the second one, then two southeast steps to the third one, and so
on, finally 2n− 3 southwest steps to the 2n-th diamond. Notice that the rightmost
element of the 0-th diamond coincides with the leftmost element of the 2n-th one.

Lemma 10. Let n ≥ 2 and ~u = (a, b, c), and let ~v = (d, e, f) belong to the cube
of Ln such that ~d(~u) = ~u. Let ~v ∗ = (d∗, e∗, f∗) := ~m(~u,~v ). Then ~d(~v ∗) = ~v ∗, and
the following three statements hold:

(a) If ~u is a diamond whose middle element is c or if ~u is a singleton, then ~v ∗

is a singleton. In particular, if ~v ∗ is a diamond, then ~u is a diamond as
well.
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(b) If ~v ∗ is a diamond and c is the rightmost element of ~u, then d∗ is the
leftmost element of ~v ∗ and the elements a, b, c, d∗, e∗, f∗ generate, apart
from the a-b and e-f symmetries, either the “northeast” lattice of Figure 2
or its eight-element quotient lattice by the indicated congruence.

(c) If ~v ∗ is a diamond and c is the leftmost element of ~u, then d∗ is the right-
most element of ~v ∗ and the elements a, b, c, d∗, e∗, f∗ generate, apart from
the a-b and e-f symmetries, either the “northwest” lattice of Figure 2 or
its eight-element quotient lattice by the indicated congruence.

Figure 2. Lattices according to compass points

Proof. First, we prove (a). If ~u is a singleton, then a = b = c ≤ d′′, e′′, f ′′. Hence
~v ′′′ has two comparable components and ~v ∗ is a singleton by Lemma 9. So assume
that ~u is a diamond and c is its middle element. If ~v ′′ is a singleton the so is ~v ∗

by Lemma 9 and there is nothing to prove. Hence we can assume that ~v ′′ is a
diamond. Its components form an antichain in the principal filter ↑c. Since a + b
is the only cover of c, this antichain is in ↑(a + b). Hence ~v ′′′ has two comparable
components, and ~v ∗ is a singleton by Lemma 9.

Next, we prove (b). Assume that ~v ∗ is a diamond and c is the rightmost element
of ~u. In virtue of Lemmas 8 and 9, ~v ′′ is a diamond in ↑c. Since the M3-sublattices
of Ln are covering sublattices, a + b and e′′f ′′ belong to Frame Ln. We have a +
b 6≤ e′′f ′′, for otherwise ~v ′′′ would have two comparable components, which would
contradict Lemma 9. Let h denote the cover of a maximal element in ↑c \ ↑(a + b);
c.f. Figure 3, where all but one of the large-sized gray-filled elements are missing.
Notice that h is uniquely determined. Since e′′f ′′ is in ↑c \ ↑(a + b) and also in

Figure 3. A part of Ln and L′
6

FrameLn, it is one of the black-filled elements in Figure 3. This makes it clear that
exactly one component, say x′′, of ~u′′ belongs to the chain [a + b, h]. If x′′ 6= d′′,
then Lemma 9 leads to a contradiction, for x′′′ = x′′ and d′′′ = a+b+d′′, belonging
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to the chain [a + b, h], are comparable. Hence x′′ = d′′. It follows easily, either via
Figure 3 or using the fact that e′′f ′′ ≺ d′′ and c ≺ a+b, that ~v ∗ = ~v ′′ with leftmost
element d∗ = d′′, a+ b+ e∗f∗ = d∗ and c = (a+ b)(e∗f∗). This completes the proof
of (b).

Finally, (c) follows from (b) via the left-right symmetry. �

We have seen from Lemma 10 that, in some cases, ~m(~u,~v ) produces a dia-
mond which is northeast of ~u. Lattice duality and the east-west (that is, right-left)
symmetry allow us to navigate in three other directions, northwest, southeast and
southwest, too. Therefore we define

~ne((a, b, c), (d, e, f)) := ~m((a, b, c), (d, e, f)),
~nw((a, b, c), (d, e, f)) := ~m((c, b, a), (f, e, d)),

~se((a, b, c), (d, e, f)) := ~m•((a, b, c), (d, e, f)),

~sw((a, b, c), (d, e, f)) := ~m•((c, b, a), (f, e, d)),

where • means that the dual procedure, that is, the lattice terms are dualized.
We consider the following set of variables

X = {xi : 0 ≤ i ≤ 2n} ∪ {yi : 0 ≤ i ≤ 2n} ∪ {zi : 0 ≤ i ≤ 2n}.

It will be convenient to gather these variables into vectors

~wi = (xi, yi, zi) (i = 0, 1, . . . , 2n).

We are going to define terms ri, si, ti over X. These terms will be gathered into
vectors

~gi = (ri, si, ti) (i = 0, 1, . . . , 2n),
and their inductive definition is what follows (compare with Figure 1):

~gi :=





~d(~w0), if i = 0;
~nw(~g0, ~w1), if i = 1;
~ne(~gi−1, ~wi), if 2 ≤ i ≤ 2n − 2 and i is even;
~se(~gi−1, ~wi), if 3 ≤ i ≤ 2n − 1 and i is odd;
~sw(~g2n−1, ~w2n), if i = 2n.

Finally, let λn denote the lattice identity r2n = s2n.

4. Proof of Theorem 1 and Corollary 2

Proof of Theorem 1. It is easy to see that, for i = 0, 1, . . . , 2n, ri(ai, bi, ci) = ai,
si(ai, bi, ci) = bi, and ti(ai, bi, ci) = ci hold in Ln. This shows that λn does not
hold in Ln.

Conversely, assume that k 6= n. We have to show that λn holds in Lk. Suppose
the contrary. Then there are elements of Lk, we denote them by the variables of λn,
such that evaluating our terms on these elements we have r2n 6= s2n. We will make
no notational distinction between the terms ri, si, ti and their values in Lk under
this evaluation. Since ~g2n = (r2n, s2n, t2n) is not a singleton, it is a diamond by
Lemma 8. Hence a successive application of Lemma 10, combined with duality and
symmetry, gives that all the ~gi are diamonds such that ti is not the middle element
of ~gi, i = 0, 1, . . . , 2n − 1. Because of the left-right (that is, west-east) symmetry,
we can assume that t0 is the rightmost element of ~g0. Then, using Lemma 10, we
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obtain that the diamonds ~g0, ~g1, . . . , ~g2n are distinct and come after each other in
the following directions:

~g0 ↖ ~g1 ↗ ~g2 ↘ ~g3 ↗ ~g4 ↘ ~g5 ↗ ~g6 ↘ · · · ↗ ~g2n−2 ↘ ~g2n−1 ↙ ~g2n.

However, this is impossible in Lk, for k 6= n. �

Proof of Corollary 2. Let P (N) =
(
P (N),⊆

)
be the power set of the set N =

{1, 2, . . .}. Consider the mapping

ϕ : P (N) → Sub(Var(Mplan)), A 7→ HSP{Lk+2 :k ∈ A}.
We claim that ϕ is an order-embedding. It is clear that A ⊆ B implies ϕ(A) ⊆ ϕ(B).

In order to show the reverse implication, assume, by way of contradiction, that
ϕ(A) ⊆ ϕ(B), k ∈ A but k /∈ B. Then λk+2 holds in all the Ln+2, n ∈ B, by
Theorem 1. Hence λk+2 holds in ϕ(B). But Lk+2 ∈ ϕ(A) ⊆ ϕ(B), so λk+2 holds
in Lk+2, which contradicts Theorem 1. �

5. Historical comments

Let Mw4 denote the class of modular lattices of width at most four. One of
the main results in R.Freese [4] is the complete description of Si(Var(Mw4)).
G. Grätzer and H. Lakser [8] presents a shorter approach to this description. As
an application of the deep structural analysis of R. Freese [4], Theorem 5.9 in [4]
asserts more than our Corollary 2: even Var(Mplan ∩Mw4) has continuumly many
subvarieties. A short new structural approach to Corollary 2 has recently been
given by G. Grätzer and R. W. Quackenbush [10].

6. Structural approach versus equational approach

While the previous sections are self-contained, the current one presumes famil-
iarity with some references.

R.Freese [4], G.Grätzer and R.W. Quackenbush [10], and K. A. Baker derive
Corollary 2 (or even Theorem 5.9 ) from structural analysis without using or pro-
ducing identities. However, they also use concrete lattices; see [10] for an account
of these lattices, including those of Baker.

Our present argument is equational, that is, based on lattice identities. This
equational argument could easily be adopted to the previously considered lattices,
which are Freese’s “snake” lattices and Baker’s “snake” lattices. This would lead
to an elementary proof of Theorem 5.9 of [4].

In private correspondence, Freese pointed out that his finite snake lattices in [4]
and Baker’s snake lattices are splitting lattices in Var(Mplan). This follows from
Corollary (3.8) of A. Day [1] and the easy Lemma 5 here. (Even more is true:
an appropriate variant of Corollary (5.4) in Day says that these snakes are splitting
lattices even in the variety of modular lattices.)

Almost the same idea is valid for our lattices Ln. Let L′
n denote the lattice

obtained from Ln by collapsing all pairs of transposed intervals that are intervals of
distinct diamonds but not collapsing any diamond. For example, L′

6 is the lattice
given in Figure 3 (compare it with Figure 1). Then L′

n is a quotient lattice of Ln

and, in the terminology of A. Day [1], Ln is obtained from L′
n via pulling apart

all coincident diamond edges. Since there is an evident representation of Ln as a
subdirect product of L′

n and two-element lattices, Ln and L′
n generate the same

variety. Clearly, L′
n is subdriectly irreducible since it has enough M3’s to guarantee
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that all prime quotients are projective, therefore L′
n is splitting in Var(Mplan)

by Day’s Corollary (3.8) in [1]. (As in the last paragraph of A.Day [1], we can
conjecture that L′

n is splitting even in the variety of modular lattices.)
Since Freese’s snakes, Baker’s snakes, and (supposedly) our L′

n are splitting
lattices, one could use the conjugate equations associated with these lattices instead
of our λn. However, finding these conjugate equations seems to be a difficult task.
(The difficulty of finding conjugate equations in general is well demonstrated by
R.Freese [5] and A.Day and R. Freese [2].) Hence it is natural that λn is not the
conjugate equation associated with L′

n. Indeed, by rearranging the diamonds in L′
n,

it is easy to produce a planar subdirectly irreducible lattice K ′
n with |K ′

n| = |L′
n|

such that λn fails in K ′
n but (by B. Jónsson [12]) L′

n does not belong to the variety
generated by K ′

n, because it is not isomorphic with K ′
n.
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